

Rechargement et restauration des plages du Pyla sur Mer: impact sur les peuplements benthiques (année 0)

Mai 2003

Estran du Pyla (Allée des Moineaux), basse mer de coefficient 114

Août 2003

X. de MONTAUDOUIN O. CHANCOLLON H. BLANCHET P. LEBLEU

Laboratoire d'Océanographie Biologique

Station Marine d'Arcachon, Université Bordeaux 1

Rechargement et restauration des plages du Pyla sur Mer : impact sur les peuplements benthiques (année 0)

Responsable scientifique : X. de Montaudouin (LOB)¹

Assistants scientifiques: H. Blanchet (LOB)

O. Chancollon (LOB)

Assistants techniques: P. Lebleu (LOB)

P. Marraco (LOB)

H. Bouillard (LEESA)²

Plongeurs: Club VSM, Arcachon

Ensablement de la plage du Pyla (Janvier 2003)

Août 2003

¹ Laboratoire d'Océanographie Biologique, Station Marine d'Arcachon, Université Bordeaux 1

² Laboratoire d'Ecophysiologie et d'Ecotoxicologie des Systèmes Aquatiques

SOMMAIRE:

1	Introduction	2
2	Méthodologie	4
_	2.1 Stratégie d'échantillonnage	
	2.1.1 Banc de Bernet	
	2.1.2 Talus du Chenal du Pyla	
	2.1.3 Estran du Pyla	
	2.2 Traitement des échantillons.	
	2.3 Granulométrie	
	2.4 Analyse des données	
3	Résultats : comparaison 2001-2003	8
J	3.1 Banc de Bernet	
	3.1.1 Granulométrie	
	3.1.2 Macrofaune benthique	
	3.2 Chenal du Pyla	
	3.2.1 Granulométrie	
	3.2.2 Macrofaune benthique	
	3.3 Estran du Pyla	
	3.3.1 Substrats durs	
	3.3.2 Substrats meubles	
4	0110110110	
	4.1 Synthèse des paramètres biocénotiques	
	4.2 Impact des travaux sur les communautés benthiques et leurs prédateurs	
	4.2.1 Critères d'évaluation	
	4.2.2 Banc de Bernet oriental	
	4.2.3 Chenal du Pyla	
	4.2.4 Zone intertidale du Pyla	24
	4.3 Conclusion générale	26
5	Références bibliographiques	27
6	Annexes	28

1 Introduction

Suite au rechargement de sable pour la restauration des plages du Pyla sur plus de 3,2 km au nord de la Corniche à partir de sables prélevés sur 82 ha du flanc Est du Banc de Bernet (hiver 2003) (**Figure 1**), une étude d'impact sur les communautés benthiques³ dans les différentes zones de travaux a été réalisée.

Les campagnes de prélèvements ont donc été réalisées au printemps sur les sites du Pyla et de Bernet afin de caractériser les communautés benthiques (abondance, biomasse, richesse spécifique, inventaire) et de les comparer aux communautés présentes avant les travaux (de Montaudouin & Raigné, 2001).

La stratégie d'échantillonnage a consisté à :

- 1) établir en plongée un état des lieux des unités biocénotiques ;
- 2) prélever à la benne des échantillons afin d'avoir une description quantitative des peuplements (richesse spécifique, biomasse et abondance par unité de surface) ;
- 3) prélever à la drague afin de récolter des espèces de grande taille à distribution spatiale plus dispersée (étude qualitative) ;
- 4) prélever au cadre ou au carottier, à pied, les échantillons de substrats meubles et durs de la zone intertidale.
- 5) estimer les surfaces des principales communautés prises en compte dans le calcul des rendements écologiques.

2

³ Communautés benthiques : faune inféodée aux fonds meubles (sables, ...) ou durs (enrochements)

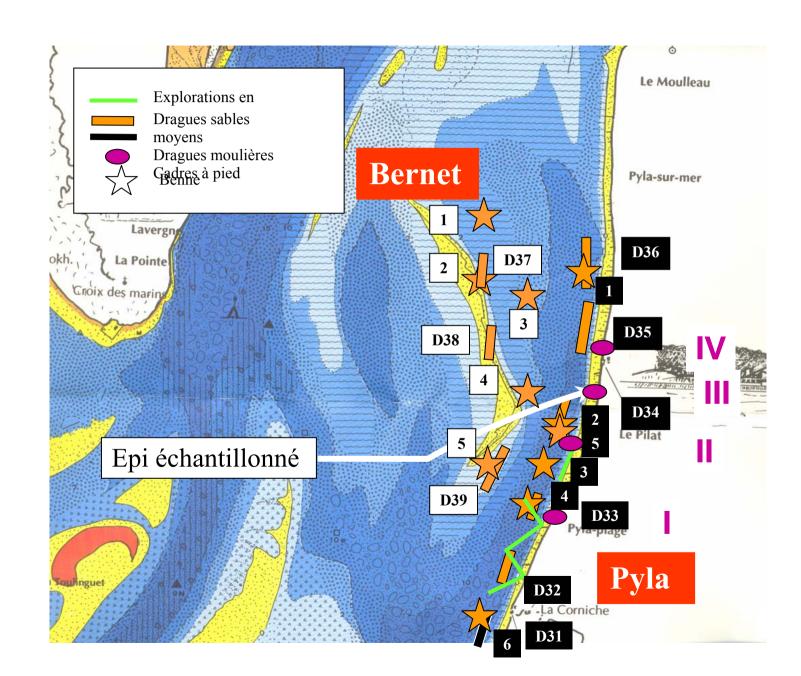


Figure 1 : Localisation des prélèvements (fonds de carte : Bouchet 1995). 1 à 6 : stations avec benne, D31 à D39 : stations avec drague, I à IV : stations à pied. Les positions sont en Annexes 1 & 2.

2 <u>Méthodologie</u>

Le site d'étude regroupe des biotopes dont les caractéristiques très diverses ont nécessité des stratégies (engins et effort) d'échantillonnage variées (**Figure 1**). Les campagnes de prélèvement, à pied et en bateau, se sont déroulées entre le 17 mai et le 16 juin 2003.

2.1 Stratégie d'échantillonnage

2.1.1 Banc de Bernet

Les abondances et les biomasses ont été déterminées par des prélèvements à la benne Eckman (15 x 15 x 15 cm) maniée manuellement par des plongeurs (**Figure 2A**). Au total, cinq stations ont été échantillonnées, chaque station faisant l'objet de deux replicats et chaque replicat représentant deux coups de benne. Les prélèvements étaient ensuite tamisés sur maille de 1 mm. Afin de compléter cette étude, six larges coups de drague à coquilles (ouverture 100 x 24 cm, maille 25 mm, (**Figure 2B**)) ont permis d'effectuer des prélèvements qualitatifs à grande échelle.

Figure 2 : Prélèvements à la benne Eckman (A) et à la drague à coquilles (B)

2.1.2 Talus du Chenal du Pyla

✓ Substrat dur

Certains substrats durs (rochers provenant de perrés ou d'épis), suite à l'érosion, se retrouvaient avant les travaux en milieu infralittoral, à la limite supérieure du talus du chenal. Ces milieux ont été complètement ensevelis par le sable. Dans la partie sud (« Haïtza »), une exploration en plongée autonome a été réalisée afin de comparer avec les prélèvements qualitatifs de la faune réalisés en 2001 (liste faunistique des « grosses espèces »).

✓ Substrat meuble

Les abondances et les biomasses ont été déterminées par des prélèvements à la benne Eckman réalisés de manière similaire aux bancs de Bernet (§ 2.1.1.). Au total, six stations ont été échantillonnées. Les prélèvements étaient ensuite tamisés sur maille de 1 mm. Afin de compléter cette étude, douze traicts de drague à coquilles ont permis d'effectuer les prélèvements qualitatifs à large échelle des espèces de grande taille.

2.1.3 Estran du Pyla

✓ Substrat meuble

Les échantillons ont été prélevés le 17 mai 2003, par un coefficient de marée de 107. La zone d'étude des sables intertidaux s'étend de La Corniche (44° 36'00 N) et la Place Meller (44° 38'20 N). Quatre sites ont été retenus :

Allée du Banc d'Arguin : 44°36'44 N

01°12'54 W

Allée des Moineaux : 44°36'65 N

01°12'42 W

Allée des Merles : 44°36'83 N

01°12'35 W

Allée des Hirondelles : 44°37'11 N

01°12'29 W

Sur chaque site, quatre quadrats (15 x 30 cm) ont été réalisés en bas niveau sur 15 cm de profondeur (**Figure 3**) et tamisés sur maille de 1 mm afin de récolter la macrofaune benthique. Les plus hauts niveaux de plage sont dépourvus de faune.

Figure 3: Prélèvement au cadre et tamisage

✓ Substrats rocheux

Une douzaine de "tortues" ou épis rocheux sont répartis dans la zone d'étude. Les vestiges plus ou moins bien conservés des anciens épis en bois ont été retirés ou ensevelis. Contrairement au substrat meuble, la faune fixée est relativement visible. Une première série d'investigations a permis de décider d'étudier dans le détail un seul épi rocheux, celui-ci étant représentatif des autres. En revanche, il existe une zonation verticale des peuplements fixés que la stratégie d'échantillonnage a dû prendre en compte (**Figure 4**):

⇒ L'étage médiolittoral inférieur est dominé par les récifs sableux d'hermelle (vers annelé). Des surfaces de 38,5 cm² ont été délimitées par un carottier et la faune y a été prélevée au couteau (4 replicats).

- ⇒ L'étage médiolittoral moyen est principalement colonisé par les moules, plus ou moins recouvertes d'algues brunes (*Fucus platycarpus*). Quatre replicats de 86,5 cm² ont été prélevés.
- ⇒ Les étages médiolittoral supérieur et supralittoral sont recouverts de populations denses de chtamale ("cracoye") et de littorine bleue (minuscule gastéropode) échantillonnées sur une surface de 38,5 cm² (4 replicats).

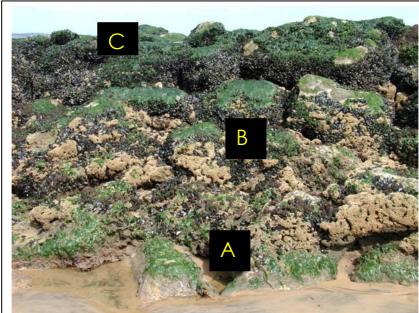


Figure 4 : Zonation verticale sur substrats durs intertidaux. A : récifs d'hermelles, B : moules, C : chtamales (sur la photo, sous les algues vertes).

2.2 Traitement des échantillons

Le tri des individus a été effectué au laboratoire et l'identification des espèces réalisée à la loupe binoculaire. Les biomasses ont été estimées en poids sec sans cendre (PSSC) qui est la différence entre le poids sec et le poids des cendres. Le poids sec est atteint après 48 h à l'étuve à 60°C. Les cendres sont obtenues après calcination pendant 2 h à 450°C. Le PSSC correspond au poids sec de matière organique.

2.3 **Granulométrie**

Les cinq premiers cm de sédiments ont été prélevés à la benne en plongée ou au carottier à pied. Le sédiment a ensuite été tamisé sur colonne de tamis humide et la médiane⁴ granulométrique a été déterminée graphiquement. La teneur en matière organique du sédiment a été calculée par perte au feu et est exprimée en % du poids de sédiment.

2.4 Analyse des données

Les communautés benthiques ont été comparées entre 2001 (avant travaux) et 2003 (après travaux) au moyen d'Analyses des Correspondances (Logiciel Statistica). Cette méthode graphique permet de projeter les stations d'échantillonnage sur un plan, leur positionnement étant calculé d'après la présence des espèces et leur abondance. Ainsi, sur un tel plan, deux stations aux communautés benthiques similaires seront proches. En d'autres termes, nous étudierons dans le temps le « déplacement » des stations sur ces plans, avec deux cas de figure : soit le nuage de points rejoint celui de 2001 (=état initial) et cela signifie que les communautés benthiques présentent les caractéristiques initiales, soit le nuage est distinct, signifiant que les communautés benthiques sont différentes. Dans ce dernier cas, il faudra distinguer un nuage de points stable (état d'équilibre), d'un nuage de points en mouvement (colonisation, état transitoire).

Les abondances et les biomasses de la faune ont été comparées entre 2001 et 2003 à travers une série de tests statistiques décrits p. 21.

_

⁴ Valeur de la taille des grains de sable (μm) pour laquelle, 50 % du poids du sédiment à des grains de taille inférieure et 50 % des grains de taille supérieure.

3 Résultats : comparaison 2001-2003

3.1 Banc de Bernet

3.1.1 Granulométrie

La médiane des sédiments de surface du flanc Est du Banc de Bernet varie entre 335 et 360 μ m, sauf la Station 1 avec 275 μ m (sables moyens) (**Annexe 2**). La teneur en éléments fins (< 63 μ m) est généralement inférieure à 3 %. Ces valeurs sont identiques à 2001. Les courbes granulométriques sont en **Annexe 3**.

3.1.2 Macrofaune benthique

Les communautés benthiques du flanc Est de Bernet sont caractérisées par des abondances, biomasses et richesses spécifiques faibles. D'une manière générale, tous les paramètres ont diminué (**Figure 5, Annexe 4**):

- l'abondance a chuté de 83 %. Toutes les espèces sont concernées, mais principalement des mollusques comme la telline papillon (*Tellina tenuis*) et des crustacés amphipodes.
- la biomasse a diminué de 99 %. Cependant, la biomasse 2001 avait été surévaluée (2001 : « La biomasse apparaît particulièrement élevée pour ce type de biotope. En fait, sur les 10 coups de bennes, un crabe de sable (*Atelecyclus undecimdentatus*) et une grande mactre (*Mactra glauca*) ont été prélevés (**Annexe 2**). Ces deux individus contribuent fortement à cette biomasse élevée (...)).
- La richesse spécifique est passée de 30 espèces en 2001 à 19 espèces en 2003.

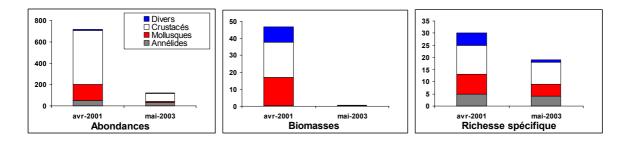


Figure 5 : Abondance moyenne (ind m⁻²), biomasse moyenne (gPSSC m⁻²) et richesse spécifique (incluant les prélèvements à la benne et à la drague) de la macrofaune benthique du flanc Est du Banc de Bernet , avant (2001) et après (2003) travaux.

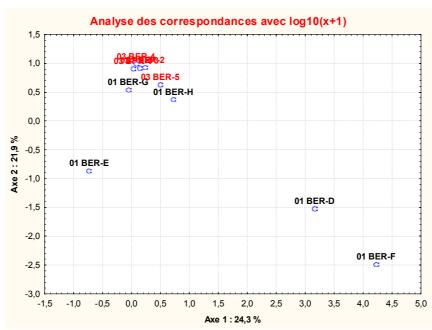


Figure 6 : Analyse des Correspondances avec en noir les stations de 2001 et en rouge les stations de 2003 (Banc de Bernet).

L'Analyse des Correspondances montre principalement deux choses (**Figure 6**): 1) que les prélèvements 2003 sont beaucoup plus homogènes dans leur pauvreté que les prélèvements 2001; 2) que certains prélèvements 2001 sont « éclatés », soit à cause de la quasi-absence d'individus (D et F), soit de la forte abondance d'une ou deux espèces (E).

Groupe zoologique	Espèce	2001	2003
Cnidaires	Calliactis parasitica (Anémone-parasite)	1,4	
Mollusques gastéropodes	Nassarius reticulatus (Nasse réticulée)	1,4	1,5
Mollusques bivalves	Callista chione (Vernis)	4,1	
	Donax sp. (Lavagnon, Olive)	4,1	
	Ensis siliqua (Couteau)	1,4	2,3
	Mactra glauca (Grande mactre)	110,1	3,9
	Mytilus edulis (Moule)	5,4	
Crustacés décapodes	Atelecyclus undecimdentatus (Crabe de sable)	1,4	0,8
	Diogenes pugilator (Pagure)	1,4	0,8
	Liocarcinus holsatus (Fausse étrille)	1,4	3,1
	Necora puber (Etrille)	1,4	
Echinodermes	Echinocardium cordatum (Oursin de sable)	2,7	
	Ophiura ophiura (Ophiure)	1,4	
Poissons	Arnoglossus thori (Arnoglosse)	1,4	
	Solea vulgaris (Sole commune)	1,4	
Abondance totale		140,4	12,4
Richesse spécifique totale	15	6	

Tableau 1 : Espèces récoltées à la drague dans les sables moyens du flanc Est du Banc de Bernet (6 traicts et 736 m en 2001, entre -3 et -5 m, et 6 traicts et 1296 m en 2003, entre ? et ? m). Les effectifs sont ramenés à 1000 m (Détails dans l'Annexe 3).

Le **Tableau 1** recense les espèces de grande taille et de faible abondance récoltées à la drague (**Annexe 5**). A distance parcourue égale, il apparaît clairement un appauvrissement en espèce (15 à 6) et en abondance. L'espèce ayant la plus souffert est la grande mactre (*Mactra glauca*), ce qui était non seulement prévu dans l'étude d'impact, mais qui s'est vérifié pendant les travaux à travers la multitude de coquilles brisées sur la plage.

3.2 Chenal du Pyla

3.2.1 Granulométrie

La médiane des sédiments de surface du chenal du Pyla varie entre 295 et 355 μm (sables moyens), avec des teneurs en éléments fins (< 63 μm) généralement inférieures à 3 %. Cependant, sur certains sites (Stations 1, 2, 5), les sables moyens propres couvrent de quelques cm des sables envasés fortement réduits, avec des teneurs en pélites de 10-13 %. Il s'agit vraisemblablement d'anciens substrats de moulières, des coquilles vides étant fréquemment retrouvées (**Annexe 2**). Les courbes granulométriques sont en **Annexe 3**.

3.2.2 <u>Macrofaune benthique</u>

Actuellement (mai 2003), le chenal du Pyla et son talus oriental apparaissent au niveau faunistique comme un état intermédiaire entre les sables fins et les fonds envasés de moulières d'avant travaux. Effectivement, les sédiments sableux sont couverts de nombreux débris (coquilles de moules et autres bivalves, fragments de tourbe ou d'alios, ...) et recouvrent parfois d'anciennes moulières.

La **Figure 7** illustre l'évolution de l'abondance, la biomasse et la richesse spécifique de la macrofaune du chenal du Pyla (-5 à -10 m en 2001, -4 à -9 m en 2003), sur les fonds de sable et de moulière **(Annexes 4 et 5)**. Les paramètres des communautés font bien ressortir le caractère intermédiaire de la situation actuelle. L'abondance 2003 (833 ind. m⁻²) se situe entre

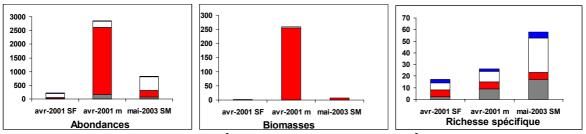


Figure 7: Abondance moyenne (ind m⁻²), biomasse moyenne (gPSSC m⁻²) et richesse spécifique (incluant les prélèvements à la benne et à la drague) de la macrofaune benthique du talus et du chenal du Pyla (sables fins <u>SF</u>, moulières <u>m</u> et sables moyens <u>SM</u>). Voir aussi Annexes 4 et 5 pour le détail des espèces.

Les valeurs 2001 des sables nus (215 ind. m⁻²) et les valeurs dans les moulières (2867 ind. m⁻²). La biomasse 2003 (7,32 g PSSC m⁻²) est évidemment beaucoup plus faible que celle des moulières (259,5 g PSSC m⁻²). Cependant la présence de quelques jeunes moules en 2003 rend la biomasse plus élevée que celle de sable nus (2001 : 2,1 g PSSC m⁻²). La richesse spécifique est logiquement plus élevée en 2003 (58 espèces, prélèvements à la drague compris) car elle cumule globalement celle des sables nus (2001 : 17 espèces) et celle des moulières (2001 : 26 espèces).

Groupe zoologique	Espèce	2001SF	2001m	2003SM
Annélides polychètes	Ophelia neglecta	8,3	1,2	
Mollusques gastéropodes	Crepidula fornicata (Crépidule)	4,2		2,3
	Nassarius reticulatus (Nasse réticulée)	12,5	33,8	36,0
Mollusques bivalves	Barnea candida (Barnée)		21,0	5,7
	Mactra glauca (Grande mactre)	70,8	8,1	2,9
	Mytilus edulis (Moule)	141,7	++++	402,7
	Venerupis pullastra (Fausse palourde)		1,2	
Crustacés	Atelecyclus undecimdentatus (Crabe de sable)	8,3	10,5	5,7
	Liocarcinus arcuatus (Etrille arquée)		1,2	1,1
	Liocarcinus holsatus (Fausse étrille)	8,3	25,6	7,4
	Macropodia rostrata (Macropode)		4,7	5,1
	Pilumnus hirtellus		1,2	
	Portumnus latipes			0,6
	Xantho incisus			0,6
	Xantho pilipes (Xanthe poilu)	8,3		1,2
Echinodermes	Echinocardium cordatum (Oursin de sable)	8,3		0,6
	Psammechinus miliaris			0,6
Abondance sans moule	108,5	69,8		
Rich. spécifique totale	Market No. 1 de la constant de	9	11	14

Tableau 2: Espèces récoltées à la drague dans les sables moyens du Chenal du Pyla (3 traicts et 240 m en 2001 sur sables fins, -9 m, 6 traicts et 859 m en 2001 sur moules, entre -5 et -10 m et 12 traicts et 1750 m en 2003, entre -6,5 et -10,6 m). Les effectifs sont ramenés à 1000 m (Détails dans l'Annexe 3). SF: sables fins, m: moulières (moules non comptées), SM: sables moyens.

Les prélèvements à grande échelle (drague) confirment la baisse générale de l'abondance des grandes espèces (principalement les mactres *Mactra glauca*) et les crabes *Atelecyclus undecimdentatus* (crabe de sable) et *Liocarcinus holsatus* (fausse étrille) (**Tableau 2, Annexe 5**). Quelques moules vivantes sont encore retrouvées, principalement sur les fonds de 10 m de la zone de la Corniche (**Figure 8**). Par ailleurs des crépidules (gastéropode d'origine américaine) ont été trouvées en petit nombre complétant ainsi la cartographie publiée de cette

espèce invasive dans le Bassin d'Arcachon (de Montaudouin et al., 2001). Cette espèce est à surveiller, mais ne semble pas être en phase d'expansion sur le Pyla.

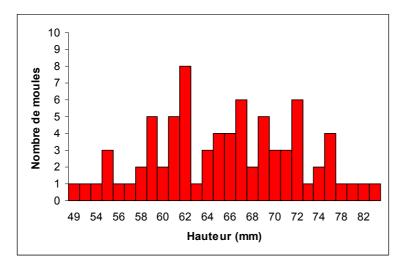


Figure 8 : Histogramme de taille des moules (vivantes) trouvées à la Corniche (Traict D31, Figure 1)

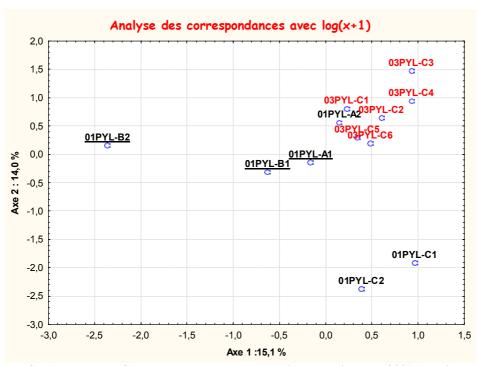


Figure 8 : Analyse des Correspondances avec en noir les stations de 2001 (souligné : avec moules) et en rouge les stations de 2003 (Chenal du Pyla).

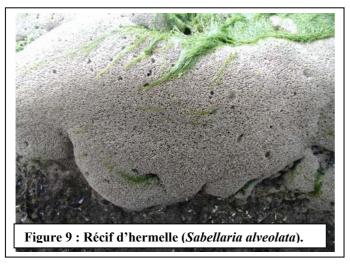
L'Analyse des Correspondances sur la faune prélevée à la benne montre les mêmes tendances que celles observées dans les banc de Bernet (**Figure 8**): 1) les prélèvements 2003 sont plus homogènes que les prélèvements 2001; 2) certains prélèvements 2001 sont « éclatés », soit à cause de la présence des moules (A1, B1 et B2), soit de la forte abondance d'une espèces (C1, C2); 3) en tout état de cause, une séparation apparaît entre 2001 et 2003.

3.3 Estran du Pyla

3.3.1 Substrats durs

La faune des substrats durs a été étudiée sur un épi rocheux, de bas en haut en distinguant la zonation verticale décrite sur la **Figure 4** ainsi qu'un étage un peu plus profond, l'infralittoral.

✓ <u>Infralittoral supérieur</u>


Ce niveau correspond à la zone rocheuse immergée située entre les niveaux de basse mer de grands coefficients et -4 m. Ces communautés n'ont été échantillonnées que qualitativement (présence d'espèces) en plongée autonome (**Tableau 3**).

Groupe	Genre espèce	Nom	Sud	Nord	2003
zoologique		vernaculaire	2001	2001	
Cnidaires					
	Anthopeura ballii				
	Corynactis viridis	Anémone perle			
Annélides					
3.6.11	Sabellaria alveolata	Hermelle			
Mollusques		TT 4			
Bivalves	3.3	Huître japonaise Moule bleue	_		
	Mytilus edulis Solen marginatus	Couteau			
Gastéropodes	Solen marginalus	Couleau		_	
Gasteropodes	Crepidula fornicata	Crépidule			
	Nassarius reticulatus	Nasse réticulée	_		
	Ocenebra erinacea	Cormaillot, perceur	_		
Crustacés		71			
	Balanus crenatus	Grande balane			
	Cancer pagurus	Tourteau			
	Carcinus maenas	Crabe vert			_
	Macropodia rostrata	Macropode			_
	Necora puber	Etrille			
Echinodermes	4	D. 1			
	Asterias rubens	Etoile rouge			
	Echinocardium cordatum	Oursin de sable			
	Holothuria tubulosa Marthasterias glacialis	Concombre de mer Grande étoile	_		I
	Ophiothrix fragilis	Ophiure fragile	_		
	Psammechinus miliaris	Oursin			l
Tuniciers	1 Sammeennus muuns	Oursin			
1 411141415	Didemnum sp.	Lard			1
	Molgula sp. 1	Molgule			
	Styela clava	Ascidie			
Poisson					
	Blennius sp.	Blennie			

Tableau 3 : Espèces récoltées sur l'infralittoral rocheux du Pyla, au sud et au nord de Haïtza en 2001, comparé à 2003.

Il est immédiatement apparu que la faune des épis avait été en grande partie détruite par ensevelissement sur l'infralittoral supérieur. Sur les 24 espèces trouvées en 2001, seulement 6 ont été retrouvées en 2003, les plus banales.

✓ Médiolittoral inférieur : Récifs d'hermelles

Les hermelles (Sabellaria alveolata) sont des vers annelés qui construisent des tubes en sable et y vivent en colonies denses. Nous nous attendions à une disparition totale de ces massifs. Les épis rocheux n'ayant pas été complètement ensevelis, des massifs ont subsisté, et surtout se sont développés sur les flancs d'érosion

(nord) de chaque épi. Le résultat global est l'apparition de nouveaux massifs colonisés par des vers juvéniles : de 23 000 ind m⁻² adultes en 2001, la population est passée à 190 000 ind m⁻² juvéniles (**Figure 9**). La biomasse d'hermelles est supérieure en 2003, autour de 210 gPSSC m⁻² contre 134 en 2001 . En revanche, la faune associée autrefois riche (2001 : 37 espèces) n'a pas eu le temps de se rétablir (2003 : 11 espèces) (**Figure 10**, **Annexe 4**). Après les hermelles, ce sont les jeunes moules qui dominent (24 000 ind m⁻²).

Beaucoup plus discret est le pétricole *Petricola lithophaga*, bivalve vivant dans la roche (endolithe) et ne communiquant avec la surface que par deux petits orifices laissant passer ses siphons. Par comptage des trous, une densité de 5 000 ind m⁻² avait été estimée (biomasse non déterminée) en 2003, se traduisant par une roche (calcaire) complètement perforée sur les 3 premiers cm. Cette estimation n'a pas été réalisée cette année.

Même sans compter le poids des pétricoles, la biomasse atteinte à ce niveau de marée dépasse les 347 g PSSC m⁻², dont plus de la moitié est due aux hermelles (**Figure 10**, **Annexe 4**).

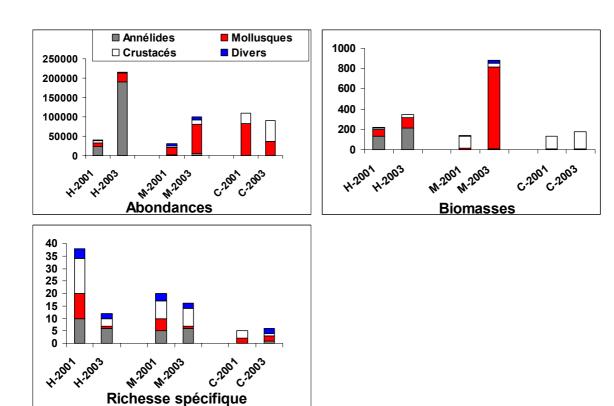


Figure 10 : Abondance moyenne (ind m⁻²), biomasse moyenne (gPSSC m⁻²) et richesse spécifique (RS) de la macrofaune benthique des épis du Pyla (H : hermelles, M : moules, C : chtamales).

L'Analyse des Correspondances sur la faune des massifs d'hermelles montre clairement une séparation entre les communautés de 2001 et celles de 2003 (**Figure 11**)

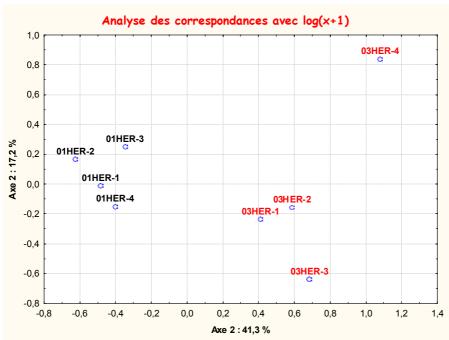


Figure 11 : Analyse des Correspondances avec en noir les stations de 2001 et en rouge les stations de 2003 (massifs d'hermelles sur les épis).

✓ Médiolittoral moyen : moules

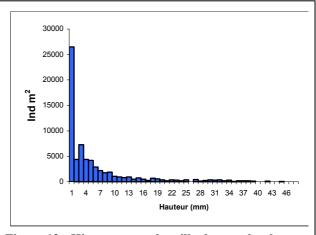


Figure 12 : Histogramme de taille des moules de l'épi.

Une grande partie de la zone médiolittorale est recouverte de moules (**Figure 12**), dont beaucoup de juvéniles ayant une taille inférieure à 3 mm (**Figure 13**), avec une densité atteignant 75 400 ind m⁻² et une biomasse de 810 g PSSC m⁻², soit 92 % de la biomasse totale (**Figure 10**). Espèce pionnière, la moule a donc recolonisé rapidement les épis, ce qui explique la forte dominance de cette espèce, encore plus nette qu'en 2001. La richesse spécifique est similaire (16 espèces) à celle de 2001 (20 espèces) (**Figure 10**). L'Analyse des Correspondances fait toujours apparaître une distinction des communautés 2001/3003, mais avec un éclatement plus net que sur les plans précédents, lié à l'hétérogénéité élevée entre les échantillons d'une même année (**Figure 14**). La faune associée est comme en 2001 dominée par les hermelles encore présentes, les diverses espèces de chtamales (*Chtamalus montagui*), les actinies *Actinia equina* (anémones de mer) et les némertes (vers non segmentés, non identifiés) (**Annexe 4**). Seules les gibbules *Gibbula umbilicalis* (Gastéropodes) manquent significativement par rapport à 2001.

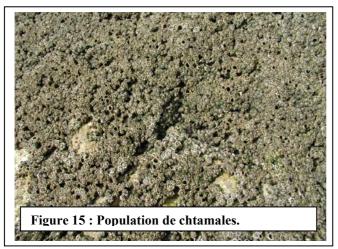



Figure 14 : Analyse des Correspondances avec en noir les stations de 2001 et en rouge les stations de 2003 (moules sur les épis).

✓ <u>Médiolittoral supérieur :</u> chtamales

Cette zone présente les conditions de vie les plus difficiles en termes de dessiccation et d'hydrodynamisme. Le d'espèces peu vivant ici particulièrement adapté, des avec effectifs élevés. Deux espèces dominent largement: 1) les chtamales

(*Chtamalus montagui*) (**Figure 15**), petits crustacés en forme de volcan, forment un encroûtement régulier sur la paroi des rochers avec une densité dépassant 50 000 ind m⁻² et une biomasse de 170 gPSSC m⁻², soit 96 % de la biomasse totale (**Figure 12**, **Annexe 8**); 2) les littorines bleues (*Melaraphe neritoides*), minuscules gastéropodes qui s'abritent entre les chtamales ou dans celles qui sont vides (35800 ind m⁻²). Ces deux espèces représentent 99 % de l'abondance totale. L'Analyse des Correspondances ne discrimine pas les deux années (**Figure 16**).

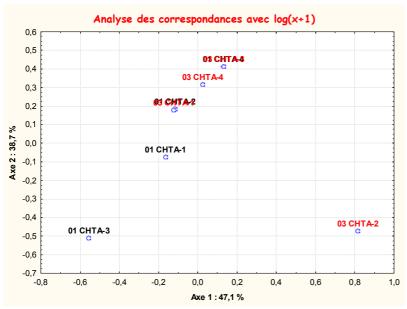


Figure 16 : Analyse des Correspondances avec en noir les stations de 2001 et en rouge les stations de 2003 (chtamales sur les épis).

3.3.2 Substrats meubles

Figure 17 : Estran du Pyla, à gauche en 2003, à droite en 2001 (flèche rouge : niveau d'échantillonnage).

Les échantillons ont donc été prélevés en bas niveau (**Figures 1 et 17**). Ce sont des sables moyens provenant de Bernet (350 μm), en pleine phase de recolonisation par la faune benthique. Abondances et biomasses ont évidemment diminué avec les travaux, respectivement de 58 et 51 % (**Figure 18**). Ce sont les bivalves, et notamment les tellines papillon (*Tellina tenuis*) qui ont le plus souffert, leur population passant de 78,9 à 1,4 ind. m⁻². L'Analyse des Correspondances sépare bien les communautés de 2001 (assez homogènes entre stations) des stations de 2003, dispersées. La station 2003 qui a « rejoint » le plus rapidement les stations de 2001, et celle en face de Haïtza, c'est-à-dire dans la zone ayant subi le moins d'ensevelissement pendant les dragages et le plus d'érosion après dragage (**Figure 19**). La richesse spécifique est équivalente entre les deux années (18 en 2001, contre 17 en

2003), ce qui permet d'envisager la présence d'un « potentiel de recolonisation ». Récemment (Juillet 2003), une population de jeunes balanoglosses, gros « vers » (entéropneustes) a été observée en bas de plage (P.-J. Labourg, communication personnelle).

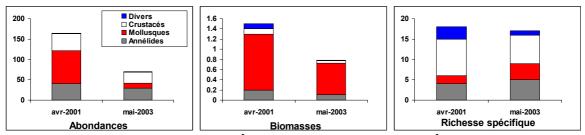


Figure 18: Abondance moyenne (ind m⁻²), biomasse moyenne (gPSSC m⁻²) et richesse spécifique de la macrofaune benthique du niveau inférieur des estrans pilatais.

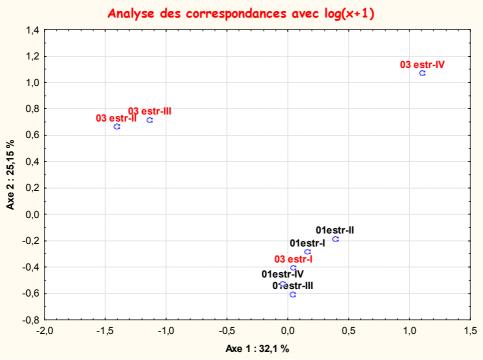


Figure 19 : Analyse des Correspondances avec en noir les stations de 2001 et en rouge les stations de 2003 (estrans du Pyla).

4 Conclusions

4.1 Synthèse des paramètres biocénotiques

Les différents biotopes concernés par les travaux envisagés sont très différents et une synthèse de leurs caractéristiques biocénotiques est présentée dans le **Tableau 4.**

Sites	Biotopes	Abondance (ind m ⁻²)	Biomasse (gPSSC m ⁻²)	Richesse spécifique
2001 Bernet	Sables moyens	716 (± 517)	38,1 (± 25,8)	27
2003 Bernet	Sables moyens	122 (± 27)	$0,4 \ (\pm \ 0,2)$	19
2001 Ch. Pyla	Sables fins	215 (± 85)	2,1 (± 1,6)	17
2001 Ch. Pyla	Moulières	$2867 (\pm 602)$	$259,5 (\pm 81,2)$	26
2003 Ch. Pyla	Sables moyens	831 (± 458)	$7,3 (\pm 4,1)$	58
Estran du Pyla				
2001	Epi: hermelles	39444 (± 4441)	$222,1 (\pm 37,2)$	38
2003	-	215846 (± 31169)	$347,6 (\pm 110,5)$	12
2001	Epi: moules	29858 (± 6323)	$142,8 (\pm 33,3)$	20
2003	-	99196 (± 10699)	$880,1 (\pm 223,4)$	16
2001	Epi: chtamales	110304 (± 12085)	$134,8 (\pm 30,7)$	5
2003	-	90992 (± 16721)	$178,7 (\pm 45,3)$	6
2001	Estran sableux	$166 (\pm 19)$	$1,6 (\pm 0,6)$	18
2003		$69 (\pm 14)$	$0.8 (\pm 0.4)$	17

Tableau 4 : Synthèse des paramètres biocénotiques des différents sites de travaux en 2001 et 2003 (l'erreur standard est précisée entre parenthèses).

4.2 Impact des travaux sur les communautés benthiques et leurs prédateurs

4.2.1 Critères d'évaluation

Les critères d'appréciation sont très variés, et seront repris pour chaque zone (hormis les épis dont la surface est négligeable) sous forme d'un tableau (Exemple : **Tableau 5**) :

• La nature des travaux (qui dans ce cas est soit du dragage soit du clapage), la superficie directement affectée, le calendrier d'exécution et la date de l'élaboration de l'état initial sont rappelés.

- Les modifications sédimentaires sont précisées, en mentionnant l'apparition d'herbiers (facteur positif pour l'écosystème) ou l'accumulation d'algues (facteur plutôt négatif).
- Les abondances des peuplements sont rappelées par groupe zoologique et sont comparées à l'état initial. Cette comparaison est faite par deux types de test statistique sur des données log(x+1)-transformées : soit par une Analyse de Variance à un facteur (année) s'il y a homogénéité des variances (test de Cochran), soit par le test de Kolmogorov-Smirnof dans le cas contraire. 'ns', signifie l'absence de différence significative avec un risque de 5 % de se tromper, '*' signifie une différence significative avec un risque de 5 % de se tromper, et '*** signifie une différence significative avec un risque de 1 % de se tromper, et '*** signifie une différence significative avec un risque de 0,1 % de se tromper.
- Les biomasses sont traitées comme les abondances. Elles serviront à estimer les pertes en biomasse animale et les répercussions sur les réseaux trophiques supérieurs (production des prédateurs) calculés selon la méthode décrite dans Sautour et al. (2000) et Montaudouin et Raigné (2001).
- L'évolution de la diversité est analysée au travers la richesse spécifique et les résultats des Analyses des Corrrespondances.
- L'apparition d'espèces exotiques (comme les crépidules) est recherchée.
- Enfin un avis est émis sur l'état de la restauration de l'environnement.

Par ailleurs, les caractères orange soulignent les paramètres encore éloignés des conditions initiales, tandis que les caractères bleus signifient que la restauration est (presque) atteinte pour un paramètre donné.

_

4.2.2 Banc de Bernet oriental

Banc de Bernet

TRAVAUX Type de travaux Superficie travaux (m²) Période des travaux Etat initial Dernière expertise	Dragage 820 000 nvier-Mars 2003 Mai-Juin 2001 Juin 2003
Période des travaux Jan Etat initial	nvier-Mars 2003 Mai-Juin 2001
- 1-1-1	
Dernière expertise	Juin 2003
SEDIMENTS Médiane (µm)	350 µm
Macroalgues	осо р
Herbiers	
Teneur en matière organique (%)	1,84-8,18
ABONDANCE PEUPLEMENTS Impact sur les annélides 53 ->	31 ind. m ⁻² , ns
Impact sur les mollusques 147 ->	> 11 ind. m ⁻² , **
Impact sur les crustacés 507 ->	76 ind. m ⁻² , ns
Impact sur la faune totale 716 -> 1	l 22 ind. m ⁻² , ns
BIOMASSE PEUPLEMENTS Impact sur les annélides 0,17 -> 0,16	6 gpssc m ⁻² , ns
	2 gpssc m ⁻² , **
	gpssc m ⁻² , ns
	4 gpssc m ⁻² , **
Perte biomasse (kgPSSC)	30 906
Perte biomasse (kgC)	15452.9
Perte production secondaire annuelle (kgC an ⁻¹)	38632.25
Perte production prédateurs annuelle (kgC an-1)	5795
Perte production prédateurs annuelle (tPF an-1)	88.1
DIVERSITE Impact sur la faune totale 27	' -> 19 espèces
Similarité des communautés (AFC)	partielle
Apparition espèces exotiques	non
RESTAURATION	ARTIELLE

Tableau 5: Synthèse des éléments pris en compte pour estimer l'état de restauration du site. Les valeurs sont comparées: 2001 -> 2003. Les caractères oranges soulignent les paramètres encore éloignés des conditions initiales, tandis que les caractères bleus signifient que la restauration est (presque) atteinte pour un paramètre donné. 'ns' signifie aucune différence significative avec un risque de 5 % de se tromper et '** signifie une différence significative avec un risque de 1 % de se tromper.

La faune de la partie orientale des bancs de Bernet est caractérisée par un peuplement relativement pauvre. Seule la biomasse des mollusques a été affectée par les travaux, de manière significative (**Tableau 5**), et surtout la population de grande mactre (*Mactra glauca*). La perte pour les échelons supérieurs (prédateurs) n'est que de 88 tonnes en poids frais par an, sur les 82 ha de bancs dragués. Les communautés sont manifestement en cours de reconstitution. Il est à noter que lors des travaux sont apparus projetés sur le rivage du Pyla des siponcles (*Sipunculus nudus*), ver lophophorien assez rare et qui n'avait pas été trouvé en

2001 sur Bernet. Cette espèce vit profondément dans le sédiment, hors de la portée de nos engins.

4.2.3 Chenal du Pyla

Deux éléments sont à considérer, d'une part les moulières et d'autre part les sables fins qui ont été transformés en 2003 en sables moyens.

Moulière Chenal du Pyla

Superficie travaux (m²) Période des travaux Etat initial Demière expertise Médiane (µm) Macroalgues Herbiers Teneur en matière organique (%) Impact sur les annélides Impact sur les mollusques Infact	TRAVAUX	Type de travaux	Clapage
Période des travaux Etat initial Dernière expertise Médiane (µm) Macroalgues Herbiers Teneur en matière organique (%) Impact sur les annélides Impact sur les moilusques Impact sur les annélides Impact sur les moilusques Impact sur les annélides Impact sur les moilusques Impact sur les moilusques Impact sur les crustacés Impact sur les noilusques Impact sur les moilusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production prédateurs annuelle (kgC an-1)			, ,
Etat initial Demière expertise Médiane (µm) Macroalgues Herbières Teneur en matière organique (%) Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les annélides Impact sur les crustacés Impact sur les annélides Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1)			
Médiane (µm) Macroalgues Herbiers Teneur en matière organique (%) Impact sur les annélides Impact sur les crustacés Impact sur le annélides Impact sur les mollusques Impact sur les mollusques Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgPSSC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuell		Etat initial	Mai-Juin 2001
Macroalgues Herbiers Teneur en matière organique (%) Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les mollusques Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques		Dernière expertise	Juin 2003
Macroalgues Herbiers Teneur en matière organique (%) Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les crustacés Impact sur les crustacés Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (kPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques	SEDIMENTS	Médiane (um)	?
Teneur en matière organique (%) Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Impact sur les annélides Impact sur la faune totale Impact sur les annélides Impact sur la faune totale Impact sur les mollusques Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production prédateurs annuelle (kgC an-1) Apparition espèces exotiques Teneur en matière organique (%) 163 -> 70 ind. m², ns 2445 -> 239 ind. m², ns 2245 -> 832 ind. m², ns 254,91 -> 6,13 gpssc m², ns 254,91 -> 6,13 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 259,5			
ABONDANCE PEUPLEMENTS Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les crustacés Impact sur les annélides Impact sur les annélides Impact sur les annélides Impact sur les annélides Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les crustacés Impact sur les crust		Herbiers	
Impact sur les mollusques Impact sur les crustacés Impact sur les annélides Impact sur les annélides Impact sur les annélides Impact sur les mollusques Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur les crustacés Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte producti		Teneur en matière organique (%)	?
Impact sur les crustacés Impact sur les annélides Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur les mollusques Impact sur les crustacés Impact sur les crustacés Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Apparition espèces exotiques	ABONDANCE PEUPLEMENTS	Impact sur les annélides	163 -> 70 ind. m ⁻² , ns
Impact sur la faune totale Impact sur les annélides Impact sur les annélides Impact sur les mollusques Impact sur les mollusques Impact sur les crustacés Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale DIVERSITE Impact sur la faune totale 2867 -> 832 ind. m², **** 0,19 -> 0,12 gpssc m², ns 254,91 -> 6,13 gpssc m², *** 4,42 -> 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², *** 4,42 -> 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², *** 4,42 -> 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 259,53 -> 7,31 gpssc m², *** 4,42 -> 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², *** 4,42 -> 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², *** 36830.958333 17077.39583 17077.39583 2562 Similarité des communaule (kgC an-1) 2562 Similarité des communautés (AFC) Apparition espèces exotiques		Impact sur les mollusques	2445 -> 239 ind. m ⁻² , ***
Impact sur les annélides Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Apparition espèces exotiques 0,19 -> 0,12 gpssc m², ns 254,91 -> 6,13 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 254,91 -> 6,13 gpssc m², ns 259,53 -> 7,31 gpssc		Impact sur les crustacés	222 -> 504 ind. m ⁻² , ns
Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale DIVERSITE 254,91 -> 6,13 gpssc m ⁻² , *** 4,42 -> 1,04 gpssc m ⁻² , *** 259,53 -> 7,31 gpssc m ⁻² , *** 17077.39583 17077.39583 2562 8830.95833 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 170777.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.95833 2562 8830.958333 2562 8830.		Impact sur la faune totale	2867 -> 832 ind. m ⁻² , ***
Impact sur les mollusques Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale DIVERSITE 254,91 -> 6,13 gpssc m ⁻² , *** 4,42 -> 1,04 gpssc m ⁻² , *** 259,53 -> 7,31 gpssc m ⁻² , *** 17077.39583 17077.39583 2562 8830.95833 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 170777.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.958333 17077.39583 2562 8830.95833 2562 8830.958333 2562 8830.	BIOMASSE PEUPLEMENTS	Impact sur les annélides	0,19 -> 0,12 gpssc m ⁻² , ns
Impact sur les crustacés Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (kpC an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 4,42 > 1,04 gpssc m², ns 259,53 -> 7,31 gpssc m², ns 259,53		Impact sur les mollusques	
Impact sur la faune totale Perte biomasse (kgPSSC) Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 259,53 -> 7,31 gpssc m ⁻² , *** 13 662 6830.958333 17077.39583 2562 6830.958333 2662 6830.958333 27,31 gpssc m ⁻² , *** 13 662 6830.958333 2662 6830.95833 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.95833 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.958333 2662 6830.95833 2662 6830.958333 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 6830.95833 2662 68630.95833 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.95832 2662 68630.958			
Perte biomasse (kgC) Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 6830.958333 17077.39583 2562 2562 2562 2562 2562 2562 2562 26 -> 58 espèces		· ·	259,53 -> 7,31 gpssc m ⁻² , ***
Perte production secondaire annuelle (kgC an-1) Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 17077.39583 2562 2562 2562 2562 2562 2562 2562 256		Perte biomasse (kgPSSC)	13 662
Perte production prédateurs annuelle (kgC an-1) Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 2562 26 -> 58 espèces non		Perte biomasse (kgC)	6830.958333
Perte production prédateurs annuelle (tPF an-1) Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques non		Perte production secondaire annuelle (kgC an ⁻¹)	17077.39583
DIVERSITE Impact sur la faune totale Similarité des communautés (AFC) Apparition espèces exotiques 126 -> 58 espèces non		Perte production prédateurs annuelle (kgC an-1)	2562
Similarité des communautés (AFC) non Apparition espèces exotiques non		Perte production prédateurs annuelle (tPF an-1)	38.9
Apparition espèces exotiques non	DIVERSITE	Impact sur la faune totale	26 -> 58 espèces
		Similarité des communautés (AFC)	non
		Apparition espèces exotiques	non
DECTALIDATION.			
RESTAURATION NULLE	RESTAURATION		NULLE

Tableau 6: Synthèse des éléments pris en compte pour estimer l'état de restauration du site. Les valeurs sont comparées: 2001 -> 2003. Les caractères oranges soulignent les paramètres encore éloignés des conditions initiales, tandis que les caractères bleus signifient que la restauration est (presque) atteinte pour un paramètre donné. 'ns' signifie aucune différence significative avec un risque de 5 % de se tromper et '*** signifie une différence significative avec un risque de 0,1 % de se tromper.

La moulière a totalement disparu (**Tableau 6**). Des coquilles en échouage sont d'ailleurs régulièrement trouvées. La perte de production en prédateur est limitée du fait de la

faible surface de la moulière (≈ 5 ha) : environ 39 tonnes par an, en poids frais. L'éventuelle reconstitution de ces moulières sera à suivre dans les années à venir.

Les sables moyens qui recouvrent la zone de clapage abritent des communautés intermédiaires entre les sables fins de 2001 et les moulières, vraisemblablement du fait des nombreux débris coquilliers. Il n'y eu aucune perte significative d'abondance ou de biomasse, mais les espèces ne sont pas les mêmes (**Figure 8, Tableau 7**).

Sables Chenal du Pyla

TRAVAUX	Type de travaux	Clapage				
TRAVAOX	Superficie travaux (m ²)	108 333				
	Période des travaux	Janvier-Mars 2003				
	Etat initial	Mai-Juin 2001				
	Dernière expertise	Juin 2003				
	э этпого охрониос	3a 2333				
SEDIMENTS	Médiane (μm)	?				
	Macroalgues					
	Herbiers					
	Teneur en matière organique (%)	?				
ABONDANCE PEUPLEMENTS	Impact sur les annélides	15 -> 70 ind. m ⁻² , ns				
	Impact sur les mollusques	44 -> 239 ind. m ⁻² , ns				
	Impact sur les crustacés	141 -> 504 ind. m ⁻² , ns				
	Impact sur la faune totale	215 -> 832 ind. m ⁻² , ns				
		,				
BIOMASSE PEUPLEMENTS	Impact sur les annélides	0,34 -> 0,12 gpssc m ⁻² , ns				
	Impact sur les mollusques	1,96 -> 6,13 gpssc m ⁻² , ns				
	Impact sur les crustacés	0,15 -> 1,04 gpssc m ⁻² , ns				
	Impact sur la faune totale	2,13 -> 7,31 gpssc m ⁻² , ns				
	Perte biomasse (kgPSSC)	-561				
	Perte biomasse (kgC)	-280.5833333				
	Perte production secondaire annuelle (kgC an ⁻¹)	-701.4 5 83333				
	Perte production prédateurs annuelle (kgC an-1)	-105				
	Perte production prédateurs annuelle (tPF an-1)	-1.6				
DIVERSITE	Impact sur la faune totale	17 -> 58 espèces				
	Similarité des communautés (AFC)	partielle				
	Apparition espèces exotiques	non				
RESTAURATION		PARTIELLE				
RESTAURTION						

Tableau 7 : Synthèse des éléments pris en compte pour estimer l'état de restauration du site. Les valeurs sont comparées : 2001 -> 2003. Les caractères oranges soulignent les paramètres encore éloignés des conditions initiales, tandis que les caractères bleus signifient que la restauration est (presqu) atteinte pour un paramètre donné. 'ns' signifie aucune différence significative avec un risque de 5 % de se tromper.

4.2.4 Zone intertidale du Pyla

Il faut distinguer la faune de l'estran sableux de la faune fixée des épis rocheux.

✓ Faune des substrats meubles

La zone concernée concerne la bande étroite du bas niveau de l'estran (≈ 3 ha). Globalement, l'abondance des mollusques a été la plus perturbée, tandis que la biomasse, déjà faible avant les travaux, n'a pas été significativement altérée (**Tableau 8**). Les communautés avant et après travaux ne sont pas encore similaires, mais la recolonisation semble en cours.

Estran bas niveau du Pyla

TRAVAUX	Type de travaux	Clapage				
TICAVAOA	Superficie travaux (m ²)	30 000				
	Période des travaux	Janvier-Mars 2003				
	Etat initial	Mai-Juin 2001				
	Dernière expertise	Juin 2003				
	·					
SEDIMENTS	Médiane (μm)	350 μm				
	Macroalgues					
	Herbiers					
	Teneur en matière organique (%)	1,67-2,33				
ABONDANCE PEUPLEMENTS	Impact sur les annélides	41 -> 29 ind. m ⁻² , ns				
	Impact sur les mollusques	80 -> 13 ind. m ⁻² , ***				
	Impact sur les crustacés	42 -> 26 ind. m ⁻² , ns				
	Impact sur la faune totale	166 -> 69 ind. m ⁻² , *				
BIOMASSE PEUPLEMENTS	Impact sur les annélides	0,24 -> 0,11 gpssc m ⁻² , ns				
	Impact sur les mollusques	1,14 -> 0,62 gpssc m ⁻² , ns				
	Impact sur les crustacés	0,07 -> 0,05 gpssc m ⁻² , ns				
	Impact sur la faune totale	1,55 -> 0,79 gpssc m ⁻² , ns				
	Perte biomasse (kgPSSC)	23				
	Perte biomasse (kgC)	11.4				
	Perte production secondaire annuelle (kgC an ⁻¹)	28.5				
	Perte production prédateurs annuelle (kgC an-1)	4				
	Perte production prédateurs annuelle (tPF an-1)	0.1				
DIVERSITE	Impact sur la faune totale	18 -> 17 espèces				
	Similarité des communautés (AFC)	non				
	Apparition espèces exotiques	non				
RESTAURATION		PARTIELLE				
MADIATION						

Tableau 8 : Synthèse des éléments pris en compte pour estimer l'état de restauration du site. Les valeurs sont comparées : 2001 -> 2003. Les caractères oranges soulignent les paramètres encore éloignés des conditions initiales, tandis que les caractères bleus signifient que la restauration est (presqu'atteinte) pour un paramètre donné. 'ns' signifie aucune différence significative avec un risque de se tromper de 5 %, '*' signifie une différence significative avec un risque de 5 % de se tromper, et '***' signifie une différence significative avec un risque de 0,1 % de se tromper.

✓ Faune des épis

La faune des épis et des perrés était vouée à totalement disparaître. Cependant, 12 épis rocheux, émergent partiellement du sable, principalement sur les flancs nord. Parmi les espèces pionnières, il est intéressant que les massifs d'hermelle (*Sabellaria* alveolata) se soient reconstitués. Ils témoignent des mouvements incessants de sables sur se site. Ces vers ne sont présents dans le Bassin d'Arcachon que sur ces estrans du Pyla. A ce titre, il pourrait être envisagé des mesures d'information au bout des allées d'accès aux plages pour éviter le piétinement et la destructions de ces récifs, dont l'intérêt patrimonial a déjà été souligné ailleurs (Gruet & Bodeur, 1997).

4.3 Conclusion générale

L'impact des travaux et le scénario de recolonisation par la faune benthique sont à ce jour conforme aux prévisions (de Montaudouin & Raigné, 2001).

5 Références bibliographiques

- Bouchet, J.-M., 1995. Bassin d'Arcachon : carte de l'environnement marin. AGP Cartographie.
- Gruet, Y. & Y. Bodeur, 1997. Les récifs d'hermelles. In Dauvin, J.-C. (ed.), Les biocénoses marines et littorales françaises des côtes Atlantique, Manche et Mer du Nord, synthèse, menaces et perspectives. Service du Patrimoine naturel / IEGB / MNHN, Paris, 168-176.
- Montaudouin, X. de, 2000. Etat initial des communautés benthiques du banc de Bernet et des chenaux du Ferret et du Pyla. Rapport du Syndicat Intercommunal du Bassin d'Arcachon.
- Montaudouin, X. de, Labarraque, D., Giraud, K. & Bachelet, G., 2001. Why does the introduced gastropod *Crepidula fornicata* fail in invading Arcachon Bay (France)? *Journal of the Marine Biological Association, United Kingdom.* 81, 97-104.
- Montaudouin, X. de & H. Raigné, 2001. Rechargement et restauration des plages du Pyla sur Mer : impact sur les peuplements benthiques. Laboratoire d'Océanographie Biologique SOGREAH, Arcachon, 1-22.
- Sautour, B., X. de Montaudouin & G. Bachelet, 2000. Projet Médoc Etat initial des communautés planctoniques et benthiques dans l'anse de la Chambrette. Laboratoire d'Océanographie Biologique, 1-39.

6 Annexes

ANNEXE 1: Positions des traicts de drague (Système géodésique WGS 84), profondeurs, distances.

Date	Heure	Profondeur	Prof. Corrigée	Traict	Station	Départ		Arrivée		Distance
22-mai	15:00	-13.0	-10.6	XXXIa	PYLA1	44°35'97	1°12'82	44°36'00	1°12'83	58
22-mai				XXXIb		44°36'01	1°12'81	44°36'05	1°12'83	82
22-mai	16:00	-10.0	-8.3	XXXIIa	2	44°36'22	1°12'69	44°36'27	1°12'72	110
22-mai				XXXIIb		44°36'30	1°12'73	44°36'35	1°12'76	110
22-mai	16:30	-10.0	-8.4	XXXIIIa	3	44°36'45	1°12'62	44°44'53	1°12'60	150
22-mai				XXXIIIb		44°36'52	1°12'61	44°36'56	1°12'60	76
27-mai	14:42	-12.0	-9.0	XXXIVa	4	44°36'84	1°12'42	44°36'92	1°12'39	164
27-mai	14:59			XXXIVb		44°36'92	1°12'37	44°36'99	1°12'35	141
27-mai	15:21	-11.0	-7.8	XXXVa	5	44°37'15	1°12'34	44°37'28	1°12'33	236
27-mai	15:33			XXXVb		44°37'29	1°12'32	44°37'42	1°12'33	229
27-mai	15:44	-10.0	-6.5	XXXVIa	6	44°37'53	1°12'30	44°37'60	1°12'31	135
27-mai	15:53			XXXVIb		44°37'62	1°12'32	44°37'76	1°12'35	259
27-mai	16:07	-9.0	-5.5	XXXVIIa	BERNET7	44°37'63	1°12'85	44°37'52	1°12'81	204
27-mai	16:15			XXXVIIb		44°37'50	1°12'80	44°37'39	1°12'82	203
27-mai		-10.0	-6.5	XXXVIIIa	8					196
27-mai	16:23			XXXVIIIb		44°37'21	1°12'76	44°37'12	1°12'69	196
27-mai	16:40	-8.0	-4.5	XXXIXa	9	44°36'72	1°12'79	44°36'60	1°12'83	220
27-mai	16:47			XXXIXb		44°36'57	1°12'84	44°36'44	1°12'92	277

ANNEXE 2 : Positions des prélèvements à la benne (Système géodésique WGS 84), profondeurs, caractéristiques granulométriques. Les prélèvements Chenal 1b et Chenal 2a correspondent à des sédiments situées 5 cm sous des sables propres.

Station	Date	coef	Heure	Latitude	Longitude	Profondeur	Médiane	% pélites	% MO
Estran I	17/05/2003		12:26	44°36'44	1°12'54		350 µm	2.33%	0.29
Estran II	17/05/2003		12:46	44°36'65	1°12'42		350 µm	2.10%	0.38
Estran III	17/05/2003		13:01	44°36'83	1°12'35		345 µm	2.01%	0.33
Estran IV	17/05/2003		13:16	44°37'11	1°12'29		345 µm	1.67%	0.39
Chenal 1a	20/05/2003		14:35	44°37'34	1°12'29	-5.7	330 µm	2.15%	0.43
Chenal 1b	20/05/2003		14:35	44°37'34	1°12'29	-5.7	300 μm	11.12%	5.12
Chenal 2a	20/05/2003		15:20	44°36'83	1°12'38	-6	270 μm	12.47%	5.15
Chenal 2b	20/05/2003		15:20	44°36'83	1°12'38	-6	350 µm	1.96%	0.36
Chenal 3	20/05/2003		15:28	44°36'64	1°12'46	-4	355 µm	2.19%	0.31
Chenal 4	20/05/2003		15:45	44°36'45	1°12'56	-4	345 µm	1.93%	0.38
Chenal 5	28/05/2003		10:00	44°36'84	1°12'43	-9	295 μm	10.58%	4.2
Chenal 6	28/05/2003		10:20	44°35'99	1°12'84	-9	350 µm	2.61%	0.42
Bernet 1	21/05/2003		09:44	44°37'75	1°12'80	0.5	275 μm	8.18%	2.62
Bernet 2	21/05/2003		10:08	44°37'44	1°12'90	-4.5	350 µm	2.09%	0.39
Bernet 3	21/05/2003		10:19	44°37'40	1°12'66	-3.5	335 µm	1.84%	0.43
Bernet 4	21/05/2003		10:37	44°36'97	1°12'61	-8.5	335 µm	2.08%	0.39
Bernet 5	21/05/2003		11:01	44°36'69	1°12'81	-3.5	360 µm	2.18%	0.33

ANNEXE 3 : Etude granulométrique du Banc de Bernet Est (Stations 1 & 2)

SITE STATION: Date:	Banc de Bernet 1 21/05/2003		Latitude: 44°37'75 Longitude: 1°12'80 Profondeur -3m
μm <63 63 125 250 500 1000 Poids sec total (g) μm <63 63 125	Poids sec (g) 5.228 1.373 20.941 34.072 0.596 1.718 63.928 % cumulé 8.18% 10.33%	% 8.18% 2.15% 32.76% 53.30% 0.93% 2.69% 100.00%	% cumulé 100% 90% - 80% - 70% - 60% - 50% 40% - 30% - 20% 10% - 0% - Taille des grains (μm)
250 500 1000	43.08% 96.38% 97.31%		Médiane: 275 μm % MO: 2.62
SITE STATION: Date:	Banc de Bernet 2 21/05/2003		Latitude: 44°37'44 Longitude: 1°12'90 Profondeur -8m
μm <63 63 125 250 500 1000	Poids sec (g) 2.053 0.042 9.241 76.723 7.967 2.036	% 2.09% 0.04% 9.42% 78.24% 8.12% 2.08% 100.00%	100% % cumulé 80% - 60% - 40% - 20% -
Poids sec total (g) μm <63 63 125 250 500 1000	98.062 % cumulé 2.09% 2.14% 11.56% 89.80% 97.92%		0%

ANNEXE 3 (suite) : Etude granulométrique du Banc de Bernet Est (Stations 3 & 4)

SITE STATION: Date:	Banc de Bernet 3 21/05/2003		Latitude: 44°37'40 Longitude: 1°12'66 Profondeur -8m
μm <63 63 125 250 500 1000 Poids sec total (g)	Poids sec (g) 1.671 0.069 10.085 78.702 0.46 0.014 91.001	% 1.84% 0.08% 11.08% 86.48% 0.51% 0.02% 100.00%	Taille des grains (µm)
<63 63 125 250 500 1000	1.84% 1.91% 12.99% 99.48% 99.98%		Médiane: 335 μm % MO: 0.43
SITE STATION: Date:	Banc de Bernet 4 21/05/2003		Latitude: 44°36'97 Longitude: 1°12'61 Profondeur -12m
μm <63 63 125 250 500 1000 Poids sec total (g)	Poids sec (g) 1.659 0.042 10.624 66.48 0.912 0.028	% 2.08% 0.05% 13.32% 83.37% 1.14% 0.04% 100.00%	% cumulé 100% - 80% - 40% - 20% - 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
μm <63 63 125 250 500	% cumulé 2.08% 2.13% 15.46% 98.82%		Taille des grains (μm) Médiane: 335 μm

% MO:

0.39

1000

99.96%

ANNEXE 3 (suite) : Etude granulométrique du Banc de Bernet Est (Station 5)

Latitude:

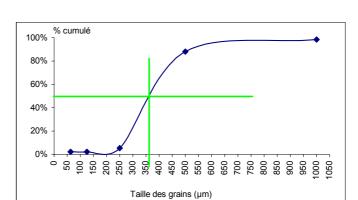
Longitude:

Profondeur

44°36'69

1°12'81

-7m


U	200 00 2001						
STATION:	5						
Date:	21/05/2003						
μm	Poids sec (q)	%					
<63	2.074	2.18%					
63	0.009	0.01%					
125	3.076	3.24%					
250	78.572	82.67%					
500	9.741	10.25%					
1000	1.572	1.65%					
		100.00%					

Banc de Bernet

Poids sec total (g) 95.044

SITE

μm <63	% cumulé
63	2.18%
125	2.19%
250	5.43%
500	88.10%
1000	98.35%

Médiane:	360 µm
% MO:	0.33

ANNEXE 3 (suite) : Etude granulométrique du Chenal du Pyla (Station 1). 1a : surface, 1b : 5 cm sous la surface.

SITE	Chenal Pyla		Latitude: 44°37'34
STATION:	1a		Longitude: 1°12'29
Date:	20/05/2003		Profondeur: -7m
μm <63 63 125 250 500 1000 Poids sec total (g) μm <63 63 125 250 500 1000	Poids sec (g) 1.574 0.15 11.508 56.248 3.221 0.502 73.203 % cumulé 2.15% 2.36% 18.08% 94.91% 99.31%	% 2.15% 0.20% 15.72% 76.84% 4.40% 0.69% 100.00%	% cumulé 100% 80% 60% 40% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
SITE	Chenal Pyla		Latitude: 44°37'34
STATION:	1b		Longitude: 1°12'29
Date:	20/05/2003		Profondeur -7 m
μm <63 63 125 250 500 1000 Poids sec total (g) μm <63 63 125 250 500 1000	Poids sec (g) 3.627 1.496 6.548 16.819 3.588 0.537 32.615 % cumulé 11.12% 15.71% 35.78% 87.35% 98.35%	% 11.12% 4.59% 20.08% 51.57% 11.00% 1.65% 100.00%	% cumulé 100% 90% 80% 70% 60% 50% 40% 30% 10% 0% 0% Taille des grains (μm) Médiane: 300 μm

% MO:

5.12

ANNEXE 3 (suite) : Etude granulométrique du Chenal du Pyla (Station 1). 2b : surface, 2a : 5 cm sous la surface.

SITE STATION: Date:	Chenal Pyla 2a 20/05/2003		Latitude: 44°36'83 Longitude: 1°12'38 Profondeur -7m
μm <63 63 125 250 500 1000 Poids sec total (g)	Poids sec (g) 5.075 1.907 11.966 17.496 4.057 0.206	% 12.47% 4.68% 29.40% 42.98% 9.97% 0.51% 100.00%	% cumulé 100% 80% - 60% - 40% - 0% - 0% - 0% - 0% - 0% - 0% -
μm <63 63 125 250 500	% cumulé 12.47% 17.15% 46.55% 89.53% 99.49%		Médiane: 270 μm % MO: 5.15
SITE STATION: Date:	Chenal Pyla 2b 20/05/2003		Latitude: 44°36'83 Longitude: 1°12'38 Profondeur -7m
μm <63 63 125 250 500 1000 Poids sec total (g)	Poids sec (g) 1.895 0.086 7.449 76.531 8.523 2.178	% 1.96% 0.09% 7.71% 79.17% 8.82% 2.25% 100.00%	% cumulé 100% 90% 80% 70% 60% 40% 100% 90% 10% 90% 10% 90% 10% 90% 90% 90% 90% 90% 90% 90% 90% 90% 9
μm <63	% cumulé		Taille des grains (μm)
63 125 250 500 1000	1.96% 2.05% 9.76% 88.93% 97.75%		Médiane: 350 μm % MO: 0.36

ANNEXE 3 (suite) : Etude granulométrique du Chenal du Pyla (Stations 3 & 4)

SITE STATION: Date:	Chenal Pyla 3 20/05/2003		Latitude: 44°36'64 Longitude: 1°12'46 Profondeur -5m
μm <63 63 125 250 500 1000 Poids sec total (g		% 2.19% 0.03% 2.41% 83.86% 11.26% 0.25% 100.00%	% cumulé 100% 80% 60% 40% 20% 0% 0% 0% 0% 0% 0% 0% 0%
μm <63 63 125 250 500 1000	% cumulé 2.19% 2.22% 4.63% 88.49% 99.75%		Taille des grains (μm) Médiane: 355 μm % MO: 0.31
SITE STATION: Date:	Chenal Pyla 4 20/05/2003		Latitude: 44°36'45 Longitude: 1°12'56 Profondeur -5m
μm <63 63 125 250 500 1000 Poids sec total (g	Poids sec (g) 1.702 0.058 7.986 74.161 3.523 0.775	% 1.93% 0.07% 9.05% 84.08% 3.99% 0.88% 100.00%	% cumulé 80% - 60% - 40% - 20% - 0% - 0% - 0% - 0% - 0% - 0% - 0% -
μm <63 63 125 250 500	% cumulé 1.93% 2.00% 11.05% 95.13%		Taille des grains (µm) Médiane: 345 µm

% MO:

0.38

1000

99.12%

ANNEXE 3 (suite) : Etude granulométrique du Chenal du Pyla (Stations 5 & 6)

SITE STATION:	Chenal Pyla 5		Latitude: 44°36'84 Longitude: 1°12'43
Date:	28/05/2003		Profondeur -10m
Bato.	20,00,200		Troising and Trois
μm <63 63 125 250 500 1000 Poids sec total (g) μm <63 63 125 250	Poids sec (g) 2.635 1.111 5.65 14.644 0.693 0.169 24.902 % cumulé 10.58% 15.04% 37.73%	% 10.58% 4.46% 22.69% 58.81% 2.78% 0.68% 100.00%	% cumulé 80% 60% 40% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
500 1000	96.54% 99.32%		% MO: 4.2
SITE STATION: Date:	Chenal Pyla 6 28/05/2003		Latitude: 44°35'99 Longitude: 1°12'84 Profondeur -10m
μm <63 63 125 250 500 1000	Poids sec (g) 2.163 0.023 6.752 64.433 8.501 1.131	% 2.61% 0.03% 8.13% 77.63% 10.24% 1.36% 100.00%	% cumulé 80% - 40% - 20% - 0% - 0% - 0% - 0% - 0% - 0% -
μm	% cumulé		Taille des grains (µm)
<63	2 640/		
63 125	2.61% 2.63%		Médiane: 350 µm
250	10.77%		wediane. 300 pm
500	88.40%		% MO: 0.42

ANNEXE 3 (suite) : Etude granulométrique de l'estran du Pyla (Stations I & II)

SITE STATION:	Estran du Pyla		Latitude: 44°36'5331
Date:	17/05/2003		Longitude: 1°12'54
μm <63 63 125 250 500 1000 Poids sec total (g) μm <63 63 125 250	Poids sec (g) 2.296 0.06 6.324 78.922 9.891 1.14 98.633 % cumulé 2.33% 2.39% 8.80%	% 2.33% 0.06% 6.41% 80.02% 10.03% 1.16% 100.00%	% cumulé 100% 80% 60% 40% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0
500 1000	88.82% 98.84%		% MO: 0.29
SITE STATION: Date:	Estran Pyla II 17/05/2003		Latitude: 1°12'42 Longitude: 44°36'65
μm <63	Poids sec (g) 2.111	% 2.10%	% cumulé
63	0.039	0.04%	100% -
125	5.704	5.66%	80% -
250 500	84.847 7.24	84.27% 7.19%	60% -
1000	0.748	0.74%	40% -
Poids sec total (g)	100.689	100.00%	20% -
µm <63 63 125 250 500 1000	% cumulé 2.10% 2.14% 7.80% 92.07% 99.26%		0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ANNEXE 3 (suite) : Etude granulométrique de l'estran du Pyla (Stations III & IV)

SITE STATION: Date:	Estran Pyla III 17/05/2003		Latitude: 44°36'83 Longitude: 1°12'35
μm <63 63 125 250 500 1000 Poids sec total (g μm <63 63 125 250 500 1000	Poids sec (g) 1.882 0.07 9.425 79.383 2.517 0.435) 93.712 % cumulé 2.01% 2.08% 12.14% 96.85% 99.54%	% 2.01% 0.07% 10.06% 84.71% 2.69% 0.46% 100.00%	100% % cumulé 80% - 60% - 40% - 20% - 0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SITE STATION: Date:	Estran Pyla IV 17/05/2003		Latitude: 44°37'11 Longitude: 1°12'29
μm <63 63 125 250 500 1000 Poids sec total (g μm <63 63 125 250 500 1000	Poids sec (g) 1.953 0.102 15.575 96.299 2.734 0.148) 116.811 % cumulé 1.67% 1.76% 15.09% 97.53% 99.87%	% 1.67% 0.09% 13.33% 82.44% 0.13% 100.00%	7 cumulé 100% 80% 40% 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0

ANNEXE 4 : Prélèvements à la benne Eckman sur les Bancs de Bernet Est

DATE: SITE:	21/05/2003 Banc de Bernet		PROF.:									
BIOTOPE Surface (2 bennes):	SABLES 0.045	Benne Eckr	man									
			P	ar 2 benne	es							
STATION: LATITUDE	1 44°37'7	75		2 37'44		3 37'40		4 86'97	5 44°3			
LONGITUDE	1°12'8			2'90		2'66		2'61	1°12			
											Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#a	#b	#a	#b	#a	#b	#a	#b		
Annélides Malacoceros fuliginosus	0	0	0	0	1	0	0	0	0	0	2.2	2.22
Nephtys	2	1	2	1	1	0	1	1	2	0	24.4	5.19
Spio filicornis	1	0	0	0	0	0	0	0	0	Ö	2.2	2.22
Spionidae	0	0	0	0	0	0	0	0	1	0	2.2	2.22
Mollusques Cardiidae	0	0	0	1	0	0	0	0	0	0	2.2	2.22
Mactridae	0	0	0	0	2	0	0	0	0	0	4.4	4.44
Tellina tenuis	Ö	0	0	0	1	1	0	0	0	0	4.4	2.96
Crustacés	2	0	2	3	5	5	1	0	0	0	40.0	12.00
Bathyporeia elegans Bathyporeia guilliamsoniana	0	1	0	0	0	0	0	0	0	0	2.2	13.98 2.22
Diogenes pugilator	0	1	0	1	0	1	0	0	0	0	6.7	3.39
Gastrosaccus spinifer	0	0	0	2	1	0	1	2	0	0	13.3	5.93
Hippomedon denticulatus	0	0	0	0	1	0	0	0	1	1	6.7	3.39
Mysidacea	0	0	0	1	0	0	0	0	0	0	2.2	2.22
Urothoe pulchella	0	0	0	1	0	0	0	0	0	1	4.4	2.96
Echinodermes												
Echinocardium cordatum	0	0	0	0	2	0	0	0	0	0	4.4	4.44
Divers												
ANNELIDES	3	1	2	1	2	0	1	1	3	0	31.1	7.55
MOLLUSQUES	0	Ö	0	1	3	1	Ö	Ö	0	Ö	11.1	6.83
CRUSTACES	2	2	2	8	7	6	2	2	1	2	75.6	17.90
ECHINODERMES	0	0	0	0	2	0	0	0	0	0	4.4	4.44
DIVERS	0	0	0	0	0	0	0	0	0	0	0.0	0.00
TOTAL	5	3	4	10	14	7	3	3	4	2	122.2	26.76
BIOMASSE (ppsc)												
Annélides	0.008	0.001	0.011	0.041	0.003	0	0.002	0.002	0.002	0	0.1556	0.08758
Mollusques	0.000	0.001	0.011	0.0001	0.003	0.004	0.002	0.002	0.002	0	0.0180	0.00730
Crustacés	0.001	0.017	0.0001	0.013	0.002	0.078	0.001	0.003	0.00005	0.001	0.2581	0.16906
Echinodermes	0	0	0	0	0.002	0	0	0	0	0	0.0044	0.00444
Divers	0	0	0	0	0	0	0	0	0	0	0.0000	0
TOTAL	0.009	0.018	0.0111	0.0541	0.011	0.082	0.003	0.005	0.00205	0.001	0.4361	0.18868
RICHESSE SPECIFI	QUE											
Annélides	2	1	1	1	2	0	1	1	2	0	1.1	0.73786
Mollusques	0	0	0	1	2	1	0	0	0	0	0.4	0.69921
Crustacés	1	2	1	5	3	2	2	1	1	2	2.0	1.24722
Echinodermes	0	0	0	0	1	0	0	0	0	0	0.1	0.31623
Divers	0	0	0	0	0	0	0	0	0	0	0.0	0
TOTAL	3	3	2	7	8	3	3	2	3	2	3.6	2.1187

ANNEXE 4 (suite): Prélèvements à la benne Eckman sur le chenal du Pyla

SITE: BIOTOPE Surface (2 bennes):	Chenal du P SABLES 0.045	yla Benne Eck	kman														
						Par	2 benne	es									
DATE:	20/05	5/2003		5/2003		20/05/20	003	20/	05/2003		28/05/		:	28/05/2	003		
STATION: LATITUDE		1 37'34		2 36'83		3 44°36'0	64	44	4 1°36'45		5 44°3			6 44°35'	aa		
LONGITUDE		2'29		12'38		1°12'4			°12'56		1°12			1°12'8			
																Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#a	#b	#	а	#b	#a	#b)	#a	#b	#	а	#b	, (iii)	
Annélides	0	1	0	0)	0	0	0		0	0	,)	0	4.0	1.85
Aonides oxycephala Aphroditidae	0	0	0	0)	0	0	0		0	0			0	1.9 1.9	1.85
Capitella capitata	0	0	0	0			0	0	0		0	1)	0	1.9	1.85 4.18
Glyceridae Heteromastus filiformis	0 1	2 1	0	0 1)	0	0	0		1 7	1 0)	0	7.4 18.5	12.78
Lanice conchylega	0	0	0	1)	0	0	0		0	0)	0	1.9	1.85 2.50
Malacoceros fuliginosus Maldanidae	0 1	0	1 0	1)	0	0	0		0	0)	0	3.7 1.9	1.85
Nephtys	3	0	0	1)	0	0	2	!	0	1	()	1	14.8	6.32 1.85
Phyllodoce maculata	0	0	0	0 1			0	0	0		0	0		1	0	1.9	1.85
Phyllodoce mucosa Polydora ligni	0	0	0	1)	0	0	0		0	0)	0	1.9 1.9	1.85
Prionospio malmgreni	0	1	0	0			0	0	0		0	0)	0	1.9	1.85 1.85
Sabellaria alveolata Sabellaria spinulosa	0	0 1	0	1 0)	0	0	0		0	0	()	0	1.9 1.9	1.85
Spio filicomis	0	2	0	0)	0	0	0)	0	0	()	0	3.7	3.70
Tubificoides benedeni	0	1	0	0	()	0	0	0		0	0	()	0	1.9	1.85
Mollusques																	
Mactridae	2	1	1	0)	0	0	0		1	0)	0	9.3	4.29 171.89
Mytilus edulis Nassarius reticulatus	0 1	0 1	0 2	93 3)	0	0	0		1	0		6 3	0	203.7 22.2	7.74
Tellina tenuis	0	0	0	1	·		0	0	0		0	1		Ď	0	3.7	2.50
Crustacés																	
Abludomelita obtusata	0	0	0	30)	0	0	0	į	0	10	18	31	0	409.3	333.28
Apherusa ovalipes	0	0	0	0)	0	0	0		0	2			0	5.6	3.99
Amphipoda sp Atylus swammerdami	0	0	0	1			0	0	0		0	0) 3	0	1.9 5.6	1.85 5.56
Bathyporeia elegans	1	0	0	0)	1	1	0	1	1	0	()	0	7.4	3.16
Bathyporeia guilliamsoniana Bathyporeia sp	3 0	0	0 1	0)	0	0	0		0	0)	0	5.6 1.9	5.56 1.85
Calianassa sp	0	1	ó	0			0	0	0		0	0)	0	1.9	1.85
Corophium sp	0	0	0	0)	0	0	0		0	0		2	0	3.7	3.70
Crangonidae Diogenes pugilator	0	1 0	0	0 1)	0	0	0		0	0	(0	1.9 1.9	1.85 1.85
Gammarela fucicola	0	0	0	0)	0	0	0)	0	0		1	0	1.9	1.85
Gammaropsis maculata	0	0	0 1	0)	0 1	0	0		0	0		2	0	22.2	22.22
Gastrosaccus spinifer Hippomedon denticulatus	0	0	Ö	0	i		o	Ö	1		0	0)	0	3.7 1.9	1.85
Lekanosphaeroma monodi	0	0	0	0)	0	0	0		0	0)	1	1.9	1.85
Liocarcinus arcuatus Melita sp	0	0	0	0			0	0	0		0 1	0)	0 2	1.9 5.6	1.85 3.99
Microdeutopus sp	0	0	0	1)	0	0	0)	0	0	()	0	1.9	1.85
Mysidacea Pinnotheres pisum	0	0	0	0)	0	0	0		0	1 0) 2	0	1.9 3.7	1.85 3.70
Pisidia longicomis	0	0	0	0			0	Ö	0		0	0			0	1.9	1.85
Hippomedon denticulatus		0 0	0	0	0	1	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Urothoe pulchella	0	0 0	1	0	0	0	0	1	0	0	0	0	1	0	1	5.6	2.48451997
Echinodermes																	
Divers Némertes	0	0 0	0	0	1	0	0	0	0	0	0	0	0	0	0	1.4	
Nementes	O	0 0	U	U	'	U	U	U	U	U	U	U	U	U	U	1.4	1.38888889
ANNELIDES		0 0	1	0	2	5	0	4	2	0	3	0	1	0	2	29.2	8.77678147
MOLLUSQUES		0 0	0	0	0	0	4	0	0	1	0	1	2	1	0	12.5	6.07523137
CRUSTACES ECHINODERMES		0 0 0 0	1 0	0	1 0	2 0	0 0	1 0	0 0	0 0	0 0	0 0	3 0	4 0	6 0	26.4 0.0	9.77498908
DIVERS	0	0 0	0	0	1	0	0	0	0	0	0	0	0	0	0	1.4	0 1.3888889
TOTAL	2	0 0	2	0	4	7	4	5	2	1	3	1	6	5	8	69.4	14.1821
																	· <u></u>
																	_
BIOMASSE (ppsc)																	
Annélides		0 0	0.011	0	0.008		0	0.013		0	0.015		0.018	0	0.008	0.1125	0.03463322
Mollusques Crustacés		0 0 0 0	0 5E-05	0	0 5E-05	0.001	0.319	0 5E-05	0	0.093	0	1E-04 0	0.036		0 0.015	0.6225 0.0489	0.45167912
Echinodermes		0 0	0	0	0	0.001	0	0	0	0	0	0	0.01	0.009	0.015	0.0489	0.02604088 0
Divers		0 0	0	0	0.002	0	0	0	0	0	0	0	0	0	0	0.0028	0.00277778
TOTAL	0.00305	0 0	0.0111	0	0.0101	0.005	0.319	0.013	0.001	0.093	0.015	1E-04	0.064	0.009	0.023	0.7867	0.4438
RICHESSE SPECI	FIQUE																
Annélides		0 0	1	0	1	3	0	1	1	0	3	0	1	0	1	0.8	0.98107084
Mollusques		0 0 0 0	0 1	0	0 1	0 2	1 0	0 1	0 0	1 0	0 0	1 0	2	1	0 3	0.4 0.8	0.61913919
	1			0	0	0	0	0		0		0	0	0	0		0.93094934 0
Crustacés Echinodermes	0	0 0	0	U	U	U	U	U	0	U	0	U	U	0		0.0	U
	0	0 0 0 0 0 0	0 0 2	0 0	1 3	0 5	0 1	0 2	0 1	0 1	0 0 3	0 0 1	0 5	0 2	0 4	0.0 0.1 2.0	0.25 1.63299

ANNEXE 4 (suite): Prélèvements récif d'hermelle sur épi du Pyla

DATE: 16/06/2003 STATION: Epi Allée des Moineaux

LATITUDE 44°36'757 PROF.: Médiolittoral moyen

REPERE Epi Allée des Moineaux BIOTOPE Hermelles

Surface: 0.0038465 Carottier

		Par carott	е		Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#c	#d		
Annélides						
Aphelochaeta marioni	0	0	1	6	455.0	373.362969
Eulalia viridis	0	0	1	0	65.0	64.9941505
Hesionidae sp	0	0	1	2	195.0	124.454323
Phyllodocidae sp	0	0	0	1	65.0	64.9941505
Sabellaria alveolata	810	459	758	889	189522.9	24422.8151
Spionidae sp	0	0	0	1	65.0	64.9941505
Mollusques						
Mytilus edulis	46	30	274	18	23917.8	15842.227
Crustacés						
Balanus sp	0	0	6	0	390.0	389.964903
Chtamalus montagui	0	0	2	0	130.0	129.988301
Pachygrapsus marmoratus	1	0	1	1	195.0	64.9941505
Echinodermes						
Divers						
Actinia equina	0	0	2	0	130.0	129.988301
Némertes	10	0	1	0	714.9	631.257952
ANNELIDES	810	459	761	899	190367.9	24816.3918
MOLLUSQUES	46	30	274	18	23917.8	15842.227
CRUSTACES	1	0	9	1	714.9	545.073254
ECHINODERMES	0	0	0	0	0.0	0
DIVERS	10	0	3	0	844.9	613.15359
TOTAL	867	489	1047	918	215845.6	31168.5

BIOMASSE (ppsc	;)					
Annélides	0.815	0.705	0.885	0.881	213.5708	10.9239165
Mollusques	0.06	0.008	1.526	0.034	105.8105	97.0105283
Crustacés	0.044	0	0.148	0.196	25.2177	11.7757253
Echinodermes	0	0	0	0	0.0000	0
Divers	0.016	0	0.03	0	2.9897	1.87921907
TOTAL	0.935	0.713	2.589	1.111	347.59	110.54

RICHESSE SPEC	IFIQUE					
Annélides	1	1	4	5	2.8	2.06155281
Mollusques	1	1	1	1	1.0	0
Crustacés	1	0	3	1	1.3	1.25830574
Echinodermes	0	0	0	0	0.0	0
Divers	1	0	2	0	0.8	0.95742711
TOTAL	4	2	10	7	5.8	3.5

ANNEXE 4 (suite): Prélèvements récif de moule sur épi du Pyla DATE: 16/06/2003

STATION: Epi Allée des Moineaux

LATITUDE 44°36'757 PROF.: Médiolittoral moyen

REPERE Epi Allée des Moineaux BIOTOPE Moules

0.008654625 Carottier Surface:

		Par carotte	Э		Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#c	#d		
Annélides Aonides oxycephala Aphelochaeta marioni	1 11	20 8	0 0	0 0	606.6 548.8	568.749442 324.676407
Eulalia viridis Hesionidae sp Heteromastus filiformis Sabelle alveolata	1 2 0 77	1 0 2 37	6 3 0 0	2 1 0 4	288.9 173.3 57.8 3408.6	137.526244 74.5840778 57.7725782 2065.04981
Mollusques Mytilus edulis	662	759	698	491	75393.2	6636.30667
Crustacés Balanus sp Chtamalus montagui Gammaropsis maculata Pachygrapsus marmoratus Parhyale explorator Planes minutus Porcellana platycheles	2 1 0 2 1 2 1	0 2 0 3 0 2	0 286 0 2 0 0	0 72 1 2 0 2	57.8 10428.0 28.9 260.0 28.9 173.3 28.9	57.7725782 7779.99883 28.8862891 28.8862891 28.8862891 57.7725782 28.8862891
Echinodermes						
Divers Actinia equina Némertes	60 14	31 44	6 66	22 24	3437.5 4275.2	1309.26395 1329.18788
ANNELIDES MOLLUSQUES CRUSTACES ECHINODERMES	92 662 9 0	68 759 7 0	9 698 288 0	7 491 77 0	5084.0 75393.2 11005.7 0.0	2467.82022 6636.30667 7658.06343 0
DIVERS TOTAL	74 837	75 909	72 1067	46 621	7712.6 99195.5	802.429015 10699.2

BIOMASSE (ppsc)						
Annélides	0.08	0.106	0.067	0.007	7.5104	2.42231816
Mollusques	3.286	12.202	6.881	5.685	810.3328	217.699293
Crustacés	0.125	0.164	0.8223	0.117	35.4810	19.8793382
Echinodermes	0	0	0	0	0.0000	0
Divers	0.325	0.353	0.22	0.029	26.7776	8.48049171
TOTAL	3.8155	12.8247	7.98988	5.83776	880.10	223.44

RICHESSE SPECI	FIQUE					
Annélides	5	5	2	3	3.8	1.5
Mollusques	1	1	1	1	1.0	0
Crustacés	6	3	2	4	3.8	1.70782513
Echinodermes	0	0	0	0	0.0	0
Divers	2	2	2	2	2.0	0
TOTAL	14	11	7	10	10.5	2.9

ANNEXE 4 (suite): Prélèvements récif de chtamales sur épi du Pyla

DATE: 16/06/2003 STATION: Epi Allée des Moineaux

LATITUDE 44°36'757 PROF.: Médiolittoral moyen

REPERE Epi Allée des Moineaux BIOTOPE Chtamales

Surface: 0.0038465 Carottier

		Par carotte	;		Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#c	#d		
Annélides Aphelochaeta marioni	0	1	0	0	65.0	64.9941505
Mollusques Melaraphe neritoides Mytilus edulis	154 9	125 1	211 0	62 1	35876.8 714.9	8058.57577 545.073254
Crustacés Chtamalus montagui	295	270	165	101	54010.1	11797.4081
Echinodermes						
Divers Larves d'insectes Némertes	0	1 4	0 0	0 0	65.0 260.0	64.9941505 259.976602
ANNELIDES	0	1	0	0	65.0	64.9941505
MOLLUSQUES	163	126	211	63	36591.7	8115.25129
CRUSTACES	295	270	165	101	54010.1	11797.4081
ECHINODERMES	0	0	0	0	0.0	0
DIVERS TOTAL	0 458	5 402	0 376	0 164	325.0 90991.8	324.970753 16720.9

BIOMASSE (ppsc)						
Annélides	0	0.002	0	0	0.1300	0.1299883
Mollusques	0.048	0.026	0.05	0.011	8.7742	2.42577117
Crustacés	0.917	0.945	0.499	0.247	169.5047	43.9857567
Echinodermes	0	0	0	0	0.0000	0
Divers	0	0.004	0	0	0.2600	0.2599766
TOTAL	0.965	0.977	0.549	0.258	178.67	45.31

RICHESSE SPEC	CIFIQUE					
Annélides	0	1	0	0	0.3	0.5
Mollusques	2	2	1	2	1.8	0.5
Crustacés	1	1	1	1	1.0	0
Echinodermes	0	0	0	0	0.0	0
Divers	0	2	0	0	0.5	1
TOTAL	3	6	2	3	3.5	1.7

ANNEXE 4 (suite): Prélèvements estran du Pyla

DATE: 17/05/2003 STATION: Estrans du Pyla

PROF.: Médiolittoral inférieur

BIOTOPE SABLES

Surface (2 bennes): 0.045 Benne Eckman

Par 2 bennes

Allées : LATITUDE		Banc d'/ 44°36'				Moin 44°36					rles 6'8590				idelles 37'00		Moy (m ²)	ES (m ²)
ABONDANCES	#a	#b	#c	#d	#a	#b	#c	#d	#a	#b	#c	#d	#a	#b	#c	#d		
Annélides																		
Malacoceros fuliginosus	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1.4	1.38888889
Nephtys	0	0	0	1	0	2	3	0	4	0	0	1	0	0	0	2	18.1	7.09104518
Ophelia neglecta	0	0	0	0	0	0	1	0	0	0	0	1	0	1	Ö	0	4.2	2.23951604
Phyllodocidae sp	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Spio filicornis	0	0	0	0	0	0	1	0	0	2	0	0	0	0	0	0	4.2	3.02169794
Mollusques																		
Cardiidae	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	2.8	1.89758348
Mactridae	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1.4	1.38888889
Nassarius reticulatus	0	0	0	0	0	0	0	4	0	0	1	0	0	0	0	0	6.9	5.63599178
Tellina tenuis	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1.4	1.38888889
Crustacés																		
Bathyporeia sarsi	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Bathyporeia sp	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1.4	1.38888889
Eurydice pulchra	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Gastrosaccus spinifer	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Haustorius arenarius	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	4	13.9	7.8239371
Hippomedon denticulatus	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1.4	1.38888889
Urothoe pulchella	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	5.6	2.48451997
Echinodermes																		
Divers																		
Némertes	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1.4	1.38888889
ANNELIDES	1	0	0	1	0	2	5	0	4	2	0	3	0	1	0	2	11.1	6.41500299
MOLLUSQUES	0	0	0	0	0	0	0	4	0	0	1	0	1	2	1	0	0.0	0
CRUSTACES	1	0	0	1	0	1	2	0	1	0	0	0	0	3	4	6	11.1	6.41500299
ECHINODERMES	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0
DIVERS	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0.0	0
TOTAL	2	0	0	2	0	4	7	4	5	2	1	3	1	6	5	8	22.2	12.8

BIOMASSE (pp	BIOMASSE (ppsc)																	
Annélides	0.003	0	0	0.011	0	0.008	0.004	0	0.013	0.001	0	0.015	0	0.018	0	0.008	0.0778	0.05773503
Mollusques	0	0	0	0	0	0	0	0.319	0	0	0.093	0	1E-04	0.036	1E-04	0	0.0000	0
Crustacés	0.00005	0	0	5E-05	0	5E-05	0.001	0	5E-05	0	0	0	0	0.01	0.009	0.015	0.0006	0.00032075
Echinodermes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0000	0
Divers	0	0	0	0	0	0.002	0	0	0	0	0	0	0	0	0	0	0.0000	0
TOTAL	0.00305	0	0	0.0111	0	0.0101	0.005	0.319	0.013	0.001	0.093	0.015	1E-04	0.064	0.009	0.023	0.08	0.06

RICHESSE SPE	CIFIQUE																	
Annélides	1	0	0	1	0	1	3	0	1	1	0	3	0	1	0	1	0.5	0.57735027
Mollusques	0	0	0	0	0	0	0	1	0	0	1	0	1	2	1	0	0.0	0
Crustacés	1	0	0	1	0	1	2	0	1	0	0	0	0	2	1	3	0.5	0.57735027
Echinodermes	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.0	0
Divers	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0.0	0
TOTAL	2	0	0	2	0	3	5	1	2	1	1	3	1	5	2	4	1.0	1.2

ANNEXE 5: Prélèvements à la drague (abondances, richesse spécifique)

			CH D:	2-ma IENA 31 b	AL P.	CHE D32	mai-03 NAL F	٠.	22-ma CHEN D33 a b	AL P.	CHE D34	mai-03 NAL P.	CH D	7-mai-03 HENAL P. 35 b /m2		nai-03 NAL P.	BE D37	mai-0: RNET b /m:	. 11	BE D38	mai-l ERNE B b /n	т	BE D39	mai-03 RNET b /m2	
Mollusques																				ì					
Gastéropodes	Crepidula fornicata Cyclope neritea Gibbula umbilicalis Nassarius reticulatus	Crépidule Cyclonasse Gibbule ombiliquée Nasse réticulée			0.01							2 0.0 1 0.1					0	1 0	.00	1	0	0.01			
Bivalves											١									ì					
	Barnea candida Cerastoderma edule Crassostrea gigas Ensis siliqua Mactra glauca	Barnée Coque Huître japonaise Couteau Grande mactre				1:	2 0.0	2	0 2	0.01	0 1	10 0.0	4				1	0 0	.00		0				
	Mytilus edulis Ruditapes philippinarum Solen marginatus	Moule Palourde japonaise Couteau	350	85	6.55	0	1 0.0	0			54 21	13 1.0	8							3	0	0.02	0	1 0.	UU
Annélides Polychètes																	l			ì					
Polychetes																				ì					
Arthropodes Crustacés Décapodes																				1					
Беогройс	Atelecyclus undecimdentatus	Crabe de sable Crabe vert	2	2	0.05	•					2	3 0.0	2		1 (0.01				1	0	0.01			
	Carcinus maenas Clibanarius erythropus	Pagure																		ì					
	Crangon crangon Diogenes pugilator	Crevette grise Pagure																		1	0	0.01			
	Liocarcinus holsatus Liocarcinus arcuatus	Fausse étrille Etrille arquée	2	5 1	0.06	1 :	3 0.0	2	0 1	0.01			1	0 0.00								0.01	0	2 0.	00
	Macropodia rostrata	Macropode	o	9	0.05															ì					
	Portumnus latipes Xantho incisus Xantho pilipes	Xanthe	0	2	0.01	0	1 0.0	U			1 (0.0	1							ì					
Echinodermes																				ì					
Echinidés	Echinocardium cordatum	Oursin de sable							1 0	0.01										ì					
Astéridés	Psammechinus miliaris	Oursin	0	1	0.01															ì					
Ophiuridés	Asterias rubens	Etoile commune																		ì					
Ophidides																				ì					
Tuniciers	Ascidiella edspersa Ciona intestinalis Styela clava	Ascidie du Pacifique																		1					
	oryona onava	, todate do i acilique																		ì					
ABONDANCE MOYENNE (ind m ⁻²)					7.31		0.0			0.03		1.2		0.00		0.01			.01	ı		0.05			01
RICHESSE SPECIFIQUE					9.00	1	4.0	0		3.00		6.0	0	1.00		1.00	1	2	.00	i		6.00		2.	00
MOLLUSQUES ANNELIDES					3.00		2.0			1.00 0.00		4.0 0.0		0.00 0.00		0.00			.00 .00	i		3.00 0.00			00 00
CRUSTACES ECHINODERMES					5.00		2.0	0		1.00		2.0	0	1.00 0.00		1.00		0	.00	i		3.00 0.00		1.0	00
																			•	i					
DIVERS					9.00		0.0 4.0			0.00 3.00		0.0 6.0		0.00 1.00		0.00 1.00			.00 .00	ı		0.00 6.00			00 00

ANNEXE 5 (suite): Prélèvements à la drague (biomasses)

						CHEI D32	nai-03 NAL P. o /m2	0	22-mai-0 CHENAL D33 b /m	P.	CH D3	7-mai- IENAI 84 b	. P.	27-mai CHENA D35 a b /r	LP.	CHE D36	mai-03 NAL I i b /m2	۶.	BE D37	mai-03 RNET o /m2	В	'-mai- ERNE D38 b /n	ΞT	BEF D	nai-03 RNET 39 /m2
Mollusques Gastéropodes	Crepidula fornicata Cyclope neritea Gibbula umbilicalis Nassarius reticulatus	Crépidule Cyclonasse Gibbule ombiliquée Nasse réticulée	0 40	5	0.03						0	4	0.01						0 1	1 0.0		0 0	.02		
Bivalves	Barnea candida Cerastoderma edule Crassostrea gigas Ensis siliqua Mactra glauca Mytilus edulis Ruditapes philippinarum Solen marginatus	Barnée Coque Huitre japonaise Couteau Moule Palourde japonaise Couteau	5262	1799	101.69		8 0.5 3 0.0 0		ı 49 (0 813 :	5 3192	0.02 16.28						12	0 0. 0		i 0 0		0 18	3 0.03
Annélides Polychètes																									
Arthropodes Crustacés Décapodes Echinodermes Echinidés	Atelecyclus undecimdentatus Carcinus maenas Clibianarius erythropus Crangon crangon Diogenes pugilator Liocarcinus holsatus Liocarcinus arcuatus Macropodia rostrata Portumus latipes Xantho incisus Xantho pilipes	Crabe de sable Crabe vert Pagure Crevete grise Pagure Fausse étrille Etrille arquée Xanthe	75 8 4 0	20 26 2 33	0.30 0.08 0.20	4 1	8 0.1 :		ı 6 (0.04	50	138	0.79	9 0	0.04	34	0 0.	25			1	0 0 7 0	.01	0 9	0.02
Astéridés Ophiuridés	Echinocardium cordatum Psammechinus miliaris Asterias rubens	Oursin de sable Oursin Etoile commune	0	12	0.07			43	30(0.29															
Tuniciers	Ascidiella edspersa Ciona intestinalis Styela clava	Ascidie du Pacifique																							
BIOMASSE MOYENNE (gPF m ⁻²)					104.51		0.7	6		0.65			17.38		0.04		0.	.25	İ	0.0		0	.87		0.05
RICHESSE SPECIFIQUE					9.00		4.0			3.00			6.00		1.00			.00		2.0			.00		2.00
MOLLUSQUES ANNELIDES CRUSTACES ECHINODERMES					3.00 0.00 5.00 1.00		2.0 0.0 2.0 0.0	0	1	1.00 0.00 1.00 1.00			4.00 0.00 2.00 0.00		0.00 0.00 1.00 0.00		0. 1.	00 00 00		0.0 0.0 0.0	0	0 3	.00 .00 .00		1.00 0.00 1.00 0.00
DIVERS					0.00 9.00		0.0 4.0			0.00 3.00			0.00 6.00		0.00 1.00			00 00		0.0 2.0			.00 .00		0.00 2.00